Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Front Public Health ; 9: 818401, 2021.
Article in English | MEDLINE | ID: covidwho-1643566

ABSTRACT

COVID-19 disease caused by SARS-CoV-2 represents an ongoing global public health emergency. Rapid identification of emergence, evolution, and spread of SARS-CoV-2 variants of concern (VOC) would enable timely and tailored responses by public health decision-making bodies. Yet, global disparities in current SARS-CoV-2 genomic surveillance activities reveal serious geographical gaps. Here, we discuss the experiences and lessons learned from the SARS-CoV-2 monitoring and surveillance program at the Public Health Laboratory on Bioko Island, Equatorial Guinea that was implemented as part of the national COVID-19 response and monitoring activities. We report how three distinct SARS-CoV-2 variants have dominated the epidemiological situation in Equatorial Guinea since March 2020. In addition, a case of co-infection of two SARS-CoV-2 VOC, Beta and Delta, in a clinically asymptomatic and fully COVID-19 vaccinated man living in Equatorial Guinea is presented. To our knowledge, this is the first report of a person co-infected with Beta and Delta VOC globally. Rapid identification of co-infections is relevant since these might provide an opportunity for genetic recombination resulting in emergence of novel SARS-CoV-2 lineages with enhanced transmission or immune evasion potential.


Subject(s)
COVID-19 , Coinfection , Coinfection/epidemiology , Equatorial Guinea , Genomics , Humans , Male , SARS-CoV-2
2.
Nat Commun ; 12(1): 5769, 2021 10 01.
Article in English | MEDLINE | ID: covidwho-1447305

ABSTRACT

Distinct SARS-CoV-2 lineages, discovered through various genomic surveillance initiatives, have emerged during the pandemic following unprecedented reductions in worldwide human mobility. We here describe a SARS-CoV-2 lineage - designated B.1.620 - discovered in Lithuania and carrying many mutations and deletions in the spike protein shared with widespread variants of concern (VOCs), including E484K, S477N and deletions HV69Δ, Y144Δ, and LLA241/243Δ. As well as documenting the suite of mutations this lineage carries, we also describe its potential to be resistant to neutralising antibodies, accompanying travel histories for a subset of European cases, evidence of local B.1.620 transmission in Europe with a focus on Lithuania, and significance of its prevalence in Central Africa owing to recent genome sequencing efforts there. We make a case for its likely Central African origin using advanced phylogeographic inference methodologies incorporating recorded travel histories of infected travellers.


Subject(s)
COVID-19/transmission , COVID-19/virology , SARS-CoV-2/genetics , Africa, Central/epidemiology , Antibodies, Neutralizing/immunology , COVID-19/epidemiology , Europe/epidemiology , Humans , Immune Evasion/genetics , Mutation , Phylogeny , Phylogeography , SARS-CoV-2/classification , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/genetics , Travel/statistics & numerical data
SELECTION OF CITATIONS
SEARCH DETAIL